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Abstrllct-The linearized form of the equilibrium equations for wire rope is used to develop a theory
whil:h desl:ribes the axial response of a strand..... ith elliptil:al outer wire l:rOss·s~..ctions. to a static
ilIad for two slrand l:onfigurations. The strand geometries are the same except for a small flal surface
on each of the ouler wires for the second configuration. The forces. moments. stresses and slrains
are l:akulated using the same loading conditions for eal:h strand configuration and varying the
ellipticity of the outer wires. The results for bolh l:ases arc then evaluated and an application of the
theory is briefly disl:ussed.

NOMENCLATURE

(/: major axis of outer wire
h, minor ;uis of ouler wire
II \Iriginal ouler diaml:ter
"', numol:r of ....ires
r, initial helix radius
E modulus of e1astil:ily
F, a.xial forl:e \llll:l:nter wire
1-", ;lxial forl:e on oUler .... ires
1-", total axial load on wire rope
G, !lending moment in an outer wire
/I, ;ui;d twisting mument m ;In outer wire
M I axial twisting moment on l:enler wire
M, ;Ixial twisting moment on outer wires
,U, tUlal momenl on wire rope
.v, shearing forl:e in ;111 ouler wirc
R I r'ldius uf I:enler wire
...,. shearing slress in an ouler wire
T, axial forl:c in an outer ....ire
X, euntal:t forl:c belween an oUler wire and I:enler wire
'l!, initial helix angle of wire
j, tinal helix angle of wire
~;x, I:hange in helix angle
II, rolalional strain uf an uuter wire
i' ralio of minor axis 10 major a.xis in ellipse
~'" I:hange in curvature uf an outer wire

Puisson's ratio
P I radius of curvature of center wire
p, radius of curvature center
(1 I a.xial stress in center wire
(1, axial stress in an outer ....ire
a. bending stress in an outer wire
(1, eunlal:t stress between Ihe center wire and an ouler wire
r angle of lwist per unit length of strand
~r, change in twist per unit length of an outer wire
~ I axial strain in cenler wire
~, axial str;lin in outer wire.

INTRODUCTION

In previous research. Costello and Velinsky (1980) used general non-linear equilibrium
equations to describe the a:\ial response of a strand with oval outer wires. These equations
were develolped by separating the rope into thin helical wires and applying a solution of
the general non-linear set of equations for the twisting and bending of a thin rod. This work
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was based on a geometry of m smooth rods whose shapes in the unstressed state were helical
with dliptical cross-sections and no center wire.

\ton.: recently. Costello (1983) and Velinsky ('{ £1/. (198-l) have developed a set of
linearized equilibrium equations to describe the static response of a strand and a wire rope.
These equations are an extension of the frictionless theory to multilayer cables and are
applied to a wire rope with a center wire and m outer wires. all having circular cross­
sections.

[n this paper. the linearized form of the equilibrium equations is used to describe the
axial response of two different strand configurations with no end rotation. The first strand
ci.1ntiguration consists of a center wire having a circular cross-section and six hdical outer
wires with elliptical cross-sections that only make contact with the centa wire. The axial.
bending. shearing and contact stresses are shown to decrease fl)f the same axial load as the
outer wires become more elliptica[ (increase in eccentricity) while the original outer diameter
of the strand is kept constant.

The second strand configuration consists of a center wire having a circular cross­
section and six helical outer wires each with a circular cross-section. except for a small
flat surface which only makes contact with the center wire. The contact stresses in this
Cllntiguration arc shown to decrease significantly compared tll a configuration with no flat
surface on each of the outer wires. The minimal e1rccts of wire curvature were not considered
when calculating these Cllntaet stresses.

ANALYSIS

In order to demonstrate the reduction of stresses caused hy a tensile axial load. the
Iineari/ed form of the equilihrium equations developed hy Costello and others arc used
(Cllstello. IlJX3; Phillips ('{ £1/ .• llJXO; Velinsky and Costello. 11)80). Some of these equations
have heen modified to include elliptical wire cross-sectional dimensions.

!-"lll' the purpose of this paper. a strand has a center wire of radius R I. and fII~ helical
outer wires with cross-sections having a major axis radius l/~ and a minor axis radius he.
such that

( I )

where d is the original outer diameter of wire rope. and }' = h~ l/~. This allows the outer
wires of the unloaded strand to just come in contact with each other. In actual practice. h~

would he slightly smaller and R j would be slightly larger than the calculated values for h~

and R 1 in order to prevent this contact. This small change in h ~ and R I does not significantly
alkct the following results.

The initial helix radius r~ is

and the initial helix angle 2: is

I {' ~
'X~ = tan

'2rrr ~

where 1': is the initial pitch of the outside wires.

(3)
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Section A-A

hg. I. Gcomctry of a simplc strand.

Wht:n tht: wirt: ropt: is loadt:d (st:t: Fig. I), th~ ct:ntt:r win~ assum~s a new wire radius,
R I (I - I'~ I), and tht: outt:r wirt: assull1t:s a nt:w minor axis, h!( I - \'~ !). wht:re 'I is th~ axial
strain in tht: centt:r wirt:, and ~! is tht: axial strain in an outer wire and v is Poisson's ratio.
Tht: outt:r wirt:s, rt:maining hdical, haw a new helix angle, a!. The increas~ in helix angle,
.1:e! = i! -:e!, can be t:xprt:ssed as

(4)

where II! is the rotation of an outer wir~ ddined as II! = '!f, where f is the angle of twist
per unit length of the strand.

Th~ axial strain, I in the ct:nter wir~ is

(5)

wht:rt: F, is the total axial load. N! is the shearing forc~ in an outer wire and T! is the axial
force in an outer wirt:. As can bt: st:t:n from the results in Table 3, N! « T!, therefore the
contribution of the shear force in eqn (5) can be neglected.

The axial strain, in the center wire is thus

_ Fd,!(t;ln! :c!+ 1)+I'h:]-nt:1tEa!h!,!p! sin (X! tan (X!

~ I = nE((iif +;;'!(l~-"! sin;-;)(;'!--tan: (X! +,! + I'h!) -nt!o:h:,:(1 + v) sin :e!]'

The axial strain ~: in th~ outer wires can then be shown to be

(6)
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(7)

The change in curvature dl\~ for the outer wires is

The angle of twist per unit length d!2 is

(8)

(9)

Listed below are the force and moment equations for the loaded outer wires in static
equilibrium (see Fig. 3) :

( 10)

( II )

( 12)

( 13)

( 14)

( 15)

and

( 16)

where E is the modulus of elasticity of the wire material; G 2 is the bending moment in an
outer wire; H2 is the axial twisting moment in an outer wire; N1 is the shearing force in an
outer wire; T l is the axial force in an outer wire; Xl is the resultant contact force per unit
length acting on an outer wire; F2 is the total axial force acting on the outer wires; and Al2

is the total axial twisting moment acting on the outer wires.
For the center wire

(17)

and

( 18)

where F, is the axial force acting on the center wire. and M I is the axial twisting moment
acting on the center wire.

The total force (Frl and total moment (MT ) acting on the wire rope are
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z

Section A-A

rig. 2. View of a plane s~"Ction perpendicular to an outer wire.

and

Using these static equilibrium equations, the resultant stresses are

( 19)

(20)

(21 )

(22)

(23)

(24)

where (1" is the axial stress in an outer wire; (1a is the bending stress in an outer wire; Sis
the shearing stress in an outer wire; and (11 is the axial stress in center wire.

In calculating the contact stress (Boresi and Sidebottom, 1985) between an outer wire
and the center wire (see Fig. 2), it is assumed that the contact surface is along a straight
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Fig. J. Forces and moments acling on a II'aded helical wire in cljllilihrillm.

line clement. Also. the strand is sulliciently long to disregard the radii of curvature which
lie in the plane of the line of contact. Thus. only the radii of curvature perpendicular to the
line of contact are used to calculate the contact stress. The contract stress can then be
expressed as

(1..:. =

where

and

2[( I - v~)/E]

I I- +
2p I 2p ~

The radii of curvature for the first strand configuration. p, and p~ are

R,
p, = -;...,-­

sm- 'lC~

h
p, = ,.

• y'

(25)

(26)

(27)

(28)

(29)

For the second wire rope configuration which includes a "flat spot" on the outer wires.
the radius of curvature P I is the same as in eqn (28) and P~ = 00. thus reducing eqn (27)
to

(30)
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Table I

Modulus of elasticity (El
Poisson's ratio (v)

Ma.\imum outer diameter of cable (dl
Number of wires in second layer (m,)
Total a.\ialload (Frl
Rotational rope strain (fJ,)

original helill: angle of wire (:x,)

RESULTS

300E+07 psi
0.25

0.500 inches
6

10.000 pounds
o radians

75 degrees

As stated in the Introduction. the first strand configuration consists of a center wire
with a circular cross-section and six helical outer wires with elliptical cross-sections that
only make contact with the center wire. The second strand configuration is the same except
for a small flat surface on each of the outer wires which only makes contact with the center
wire. The parameters that are kept constant for both configurations are shown in Table I.
The modulus of elasticity E. and Poisson's ratio v. are properties of the material used in
the wire rope. The original outer diameter d. number of wires m ~ and the rotational strain
of an outer wire IJ ~ are the geometrical constraints. All of the internal forces. loads and
strains are expressed in terms of the two independent variables. the total axial load on wire
rope F r and the initial helix angle of the outer wire 7~.

Table 2 shows the resulting forces. moments. stresses and strains from eqns I. 2. 6. 17.
18 and 24 for the core wire of a steel strand under a 10.000 pound load and no end rotation.
Each column of data is based on the geometry of an outer wire in which the minor axis
radius h~ is n.:duccd hy 5"1., of the major axis radius (/~. In order to maintain a constant
outer diameter d. the core wire radius R I must increase as the minor axis h ~ decreases. This
accounts for the increase in the axial force "'1 and the reduced strain as the outer wires
become more eccentric. The moment on the core wire is zero because the strand is prevented
from having an end rotation Il~.

The fon.:es. moments. stresses and strains from eqns I. 2.4. 7 -16. 21 -23 and 24 for the
outer wires with the same geometric constraints us the core wire an.: shown in Tahle 3. The
load-carrying capacity of the outer wires decreases with increased eccentricity of each outer
wire because of the reduction in the cross-sectional areas. The axial, a 1\. bending. all and
contact stresses. an and (1c~. reduce linearly (see Figs 4. 5. 7). while the shearing stn.:ss S
reduces non-linearly (see Fig. 6) because of the reduction of the axial load F~. The strand
geometry which includes the "flat spot" reduces the contact stress between an outer wire
and the core wire from 257.570 to 176,536 psi for the concentric outer wire, a reduction of
over 30%. The contact stress between the most eccentric outer wire and the core wire is
reduced over 26"i;, by including the "flat spot" on the outer wire. The change in the reduction
of the contact stress is due to the increased radius of curvature at the point of contact.

Table 4 lists the total axial load Fl. strain ~ I and moment M Ion the strand from eqns
6. 17 and 18. The slight increase in the axial load Fr from the given value in Table I is due
to the contribution of the shearing force in the outer wires. This total shearing force is
negligible in the case of concentric outer wires and reduced with eccentricity. This is why
the contribution of the shearing force in an outer wire N ~ (1/6 of the total shearing force)
is neglected when calculating the axial strain. in the center wire. ~ I'

CONCLUSIONS

An investigation of the axial response for two strand configurations has been per-
formed.

The geometric constraints for both configurations include:

(a) a constant outer diameter d
(b) no end rotation <fl = 0)
(c) the outer wires only make contact with the center wire.



Table 2 S
~"","~__~.~~ ..~ .~. ____~.~_____~~", "_ ,m__~ ~~

~.._._-~-" .. ,_. ~,._.._-_.,-~,.

Core wire A=B 0.95..1 = B 0.90.4 = B 0.85..« = B 0.80,4 = B 0.75,4 = B 0.70." = B 065..1 = IJ 1l.60A = II
_"_",·"w.~_____~·_,_ . '. ---_.- --, ...__ .- ._--~-_._~._-_.,- ,~---- ---------~-_ ..- ,-~ --_._- ,_..- ,,~-~-~ .._------_._ ..- ~---_._-

Wire radius (R I ) 0.08623 0.09056 0.09517 0.10006 0.10526 0.11079 0.11666 0.12291 tU2956
Axial force (F.> 1726.69 1814.73 2037.77 2217.42 2415.45 2633.112 2874.63 3140.17 3432.lJO
Axial slrain in core (~II 0.002.\6 0.002.\3 0.00239 0.00235 0.00231 000228 0.00224 0.1l0221 0.1l0217
Axial slress (n, I 73lJlO 72757 71621 70502 693lJ8 6113011 67230 66161 6511911
Tolal momenl \.11,1 ooסס0.0 ooסס0,0 ooסס0.0 ooסס0.0 ooסס0.0 ooסס0.0 0.00000 0.00000 1l1l0000

"",- -----.__.

Table 3
"~..._-----

S<cond layer of wires "/=8 0.95,4 '" B 0.90.4 = B 085.4 '" B 0.1l0.4 = B 0.75.4 '" B 0.70,4 '" B 0.65.4 = H 1l.60A "" 8
---_._-~._-,--~ .._..~--,,-_.-._-- ---'-'-~-"---~' _._~~ --"_.• "'- ~._--_.".__.__.•.--~~.- --_."._,_. -"~'-'-"'----'---~- -- ._. ---" -,._, -"--,~._-- ~

Helix radius of wires r1 0.16812 0.17028 0.17258 0.17503 1l.l7763 0.18039 1l.l8333 0.18646 0.111\)711 ~
Minor axis radius b: 0.01$ Ill!! 0.07972 0.07742 0.07497 0.07237 0.06961 0.06667 tl.06354 0.06U22 ()
Major axis radius U, 0.01$188 0.08391 0.08602 0.08820 0.09046 0.09281 0.09524 0.09776 1l.100.17 0

~

Chang.: in hdix angle ~:Zl 1l,00076 0.00075 0.00074 0.00073 0.00072 0.00071 1l.00010 1l.0006lJ tlOOO67 ~

Axial strain in wire ~, 0.00226 0.00222 0.00219 000215 0.00212 0.00209 O.Otl205 0002tl2 000199 »
-<

Changc uf cun'ature ~'" -0.002o.t ~0.OIl19S 0.00192 -1l001!!7 000181 -1l.00175 - 1l.1lO 171l --0.0011,5 -0IH)15'1 ..
:>

Change in ang!.: of twist ~r 1 -0.00306 -0.00297 -0.002!!!! ·-0.002110 -0.00271 -0.00263 -1l.tlO255 -O.0024() - tl.lH)2.\S c.
Iknding momenl G1 -2.15630 - 1,98207 - 1.8077.\ -1.63.\26 -1.46272 - 1.29430 - !.13tl33 -097223 -U.li:!150 Cl
Bending stress 118 -500081 4732,45 -~6-U5 -.\197.22 - 3\)30.57 -3664.72 -3399.83 - J 136.]() -21173.74

~T\\isting moment II, - 2.5SK77 -B0097 -139701 - 2.27652 -2.13952 - 1.911657 - !.ll 1K1l4 ··16.1S112 - 1.44744
Sh.:aring stress S -300IKll -29lS5.70 2lJ59.95 2n3.36 -2874.63 -21112.42 -273537 . 2642.111 - 25.\1.69 g
Axial for~...'S in wirc T, 1427.53 1401,98 1373.85 134285 131l8.6l:l 1271.01 I22lJ.45 11113.64 11.1113 ;;j
Shearing force N1 2.17504 1.92612 1.68lS26 1.46300 1.251lS2 1.1l5603 0.1l7(71) U.71500 U.571:!/> r-

r-
('unlact f.lrce S, -5M.57 5.\8.70 -·530.SI - 51 1.85 -4'11.77 -,nO.51 -44K~03 424.211 -31"'.21 0

Contact str.:ss ( II (1.., - 257570 .- 2451HK -·23.\071 -2223~ - 2105lJ3 -1911862 - llm35 ·175414 -- 16.16'i5
Contact str.:ss (21 Uc 176536 169675 -162lS01 -155911 -148'199 - I42116 1 -1350Xll -12X012 -1211I02
A\ial fore.: S<.'CoOlllaycr F, 8276.6!! 812!!.26 796.\.85 778U6 75!!64lJ 7367.112 7126.73 hX61l.94 6567.'19
T01011 momcnt .\1 I 352.215 35l.158 349.lH3 347.778 345.1l30 341.425 336.796 .1.10.\).\7 32.1.654

-~,.,'- -_.~~- .,~-----~ .~ ~-~._-~-- ---.~-~~-"",,,._ .._~--- ."---~---~_._--~-

Table 4
--- -~_'_-" --~._'".

Total \alues A=8 1l.95,4 = H 0,90.-1 '" B 1l.85.4 = B O.SO." = B 1l.75.4 = B 0.10.4 = 8 0.65,4 = 11 0.61lA ". IJ
-~_ .._-_."_.~.~ ~.....,-~ -.. _~-- --~-

Total axial load Fr 10003.38 10002.99 10002.62 10002.27 1001l1.9.f 10001.64 10001.36 IOtltll.ll IOtJt~)!I')

T01011 axial slrain ~; 0.00246 0.00243 0.00239 0.00235 0.00231 0.00228 0.00224 0.00221 OU0217
Tolal mom~nl .\IT 352.22 351.26 34lJ.81 347.78 34503 341.42 336.110 .'-10.95 32.1.65
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Fig. 7. Contact stress.

For the first configuration consisting of a center wire having a circular cross-section
and six helical outer wires with elliptical cross-sections the following conclusions can be
made.

(I) With the total axial load Fr and the original helix angle C( 1 held constant the
percentage of the total load that the center wire supports increases and the overall strains
.md moments in the rope decrease because of the change in the center wire radius.

(2) The calculated internal stresses arc reduced as the outer wires increase their
ellipticity.

Since the second configuration is thc same as the first except for the small flat surf.tce
on each of the outer wires, the same conclusions as listed above apply. as well as:

(I) comp<lred with the first configuration. the l1<1t surface signific<lntly reduces the
contact stress between the outer wires and the center wire;

(2) this difference decreases as the outer wires become more eccentric.

If different materials are available for strand construction. the theory can be used to
optimize the design of the strand. For example. if a constant diameter. pitch of the outer
wires and number of wires in the second layer are the geometric constraints for the strand
design and the maximum load is known. the design can be modified for each of the materials.
In this way. a less costly material may be used to support the same given load. By using
this theory. other parameters can be modified to optimize the design of a strand.
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