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Abstract—The lincarized form of the equilibrium equations for wire rope is used to develop a theory
which describes the axial response of a strand, with elliptical outer wire cross-sections, to a static
load for two strund configurations. The strand geometries are the same except for a small flat surface
on each of the outer wires for the second configuration. The forces, moments, stresses and strains
are calculated using the same loading conditions for each strand configuration and varying the
ellipticity of the vuter wires. The results for both cases are then evaluated and an application of the
theory is briefly discussed.

NOMENCLATURE
a, major axis of outer wire
h, minor axis of outer wire
d original outer diameter
m, number of wires
ry initial helix radius
E modulus of elasticity
F, axial force on center wire
F, axial foree on outer wires
F; total axial load on wire rope
G, bending moment in an outer wire
H, axtl twisting moment i an outer wire
M, axtal twisting moment on center wire
M, axial twisting moment on outer wires
M, total moment on wire rope
N, shearing force in an outer wire
R, radius of center wire
S shearing stress in an outer wire
T, axial foree in an outer wire
X, contact foree between an outer wire and center wire
2, initial helix angle of wire
i, tinal helix angle of wire
Ax, change in helix angle
/s rotational strain of an outer wire
3 ratio of minor axis to major axis in ¢llipse
Ax, change in curvature of an outer wire
v Poisson’s ratio
A radius of curvature of center wire
P radius of curvature center
7, axial stress in center wire
a, axial stress in an outer wire
Ty bending stress in an outer wire
4 contact stress between the center wire and an outer wire

angle of twist per unit length of strund

change in twist per unit length of an outer wire
axial strain in center wire

axial strain in outer wire.
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INTRODUCTION

In previous research, Costello and Velinsky (1980) used general non-linear equilibrium
equations to describe the axial responsc of a strand with oval outer wires. These equations
were develolped by separating the rope into thin helical wires and applying a solution of
the general non-linear set of equations for the twisting and bending of a thin rod. This work
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was based on a geometry of m smooth rods whose shapes in the unstressed state were helical
with elliptical cross-sections and no center wire.

More recently. Costello (1983) and Velinsky er «f. (1984) have developed a set of
linearized equilibrium equations to describe the static response of a strand and a wire rope.
These equations are an extension of the frictionless theory to multilaver cables and are
applied to a wire rope with a center wire and m outer wires. all having circular cross-
sections.

In this paper. the linearized form of the equilibrium equations is used to describe the
axtal response of two different strand configurations with no end rotation. The first strand
configuration consists of a center wire having a circular cross-section and six helical outer
wires with elliptical cross-sections that only make contact with the center wire, The axial,
bending. shearing and contact stresses are shown to decrease tor the same axial load as the
outer wires become more elliptical (increase in eccentricity) while the original outer diameter
of the strand is kept constant.

The second strand configuration consists of a center wire having a circular cross-
section and six helical outer wires each with a circular cross-section, except tor a small
Aat surface which only makes contact with the center wire. The contact stresses in this
configuration are shown to decrease significantly compared to a configuration with no flat
surface on cach of the outer wires. The minimal effects of wire curvature were not considered
when calculating these contact stresses.

ANALYSIS

In order to demonstrate the reduction of stresses caused by a tensile axial load, the
lincarized form of the equilibrium equations developed by Costello and others are used
(Costello, 1983 Phillips e af., 1980 ; Velinsky and Costello, 1980). Some of these equations
have been modilied to include elliptical wire cross-sectionat dimensions,

For the purpose of this paper, a strand has a center wire of radius Ry, and m, helical
outer wires with cross-scctions having a major axis radius «, and & minor axis radius b,,
such that

v sin x,d

l’\ = . Yooy 3 S
Ay sinxy + 37 sin® xy +an({(7/2) — (n m, )"

(h

where o is the onginal outer diameter of wire rope, and y = b, «,. This allows the outer
wires of the unloaded strand to just come in contact with cach other. In actual practice, b,
would be slightly smaller und R, would be shightly larger than the calculated values tor b,
and R, inorder to prevent this contact. This small change in A, and R does not significantly
alfect the following results.

The initial helix radius 7, is

tan® ((7/2) = (n/m |"°
r:=R|+/):=h_~ | + ~/. [ ) (2)
v sint x°
and the initial helix angle x, is
7
2y = tan ' -7/—-3 (3)
(4 )

where p . is the initial pitch of the outside wires.
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Fig. 1. Geometry of a simple strand.

When the wire rope is loaded (see Fig. 1), the center wire assumes a new wire radius,
R (1 —v&)), and the outer wire assumes a new minor axis, b,(1 —v&,), where &, is the axial
striin in the center wire, and &, is the axial strain in an outer wire and v is Poisson’s ratio.
The outer wires, remaining helical, have a new helix angle, &,. The increase in helix angle,
Ax, = 4, —2,, can be expressed as

rytan [ (1 +v) —fi, tan a,]
Axy = "
ratans ay+ry+vh,

4

where ff, is the rotation of an outer wire defined as ff, = r.r, where t is the angle of twist
per unit fength of the strand.
The axial strain &, in the center wire is

__F-—m,[T, snr‘na 2+ N, cos 2,] )
' nER;

't

where Fi is the total axial load, N, is the shearing force in an outer wire and T, is the axial
force in an outer wire, As citn be seen from the results in Table 3, ¥, « T,, therefore the
contribution of the shear force in egn (5) can be neglected.

The axial striin, in the center wire is thus

Filr.(tan® 2 +l)+th ]—m nEa h,r.f3, sin o, tan a, 6)
nE[(R T4 nash, sin 1,)(r, tan® a,+ry +vhy) —myasbyr, (I +v)sin 2,

I

The axial strain &, in the outer wires can then be shown to be
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5 = Az, 7
21 T 61 tan 1, . ( )
The change in curvature Ax . for the outer wires is
2 sin %, €Os %, v cos” a, } .
Ak, = “—"'—‘.Alz‘*' ‘T.(RGH‘[):C:)- (8)
The angle of twist per unit length At, is
1-2sin’a, vSin %, COS %y )
Aty = A e (R 4 6:E). ©

Listed below are the force and moment equations for the loaded outer wires in static
equilibrium (see Fig. 3):

G, = gEa;bQAx: (10)
nEuib)
Hy=_.——— " _ At,
T 20+ v (az+h3) i (I
cos® a, sin a, cos 2,
Ny=Hy — 3 oGm0 (12)
ra ra
Ty =nEu:by$, (13)
N os COS %+ 05> o
Xy = N, @ cos 0 o cosa (14
ra rs
F:="1:[T:Sina2+N3C05a3] (15)
and
s =m[Hysinay+ G,y cos a3+ Tyry cos o, —Nar, sin as] (16)

where E is the modulus of elasticity of the wire material; G, is the bending moment in an
outer wire; H, is the axial twisting moment in an outer wire; N, is the shearing force in an
outer wire; T, is the axial force in an outer wire; X, is the resultant contact force per unit
length acting on an outer wire ; F, is the total axial force acting on the outer wires ; and M,
is the total axial twisting moment acting on the outer wires.

For the center wire

F, = nERi¢, 7
and
nERf,
B Tr. (13)

where F, is the axial force acting on the center wire, and M, is the axial twisting moment
acting on the center wire.
The total force (Fy) and total moment (M) acting on the wire rope are
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Fig. 2. View of a planc section perpendicular to an outer wire.

Fy=Fi+F, (19

and

M =M +M,. (20)

Using these static equilibrium equations, the resultant stresses are

”‘=n12: 1)
$= 1:2);1,2{[;; @)
m:ﬁ# (24)

where o, is the axial stress in an outer wire ; gy is the bending stress in an outer wire; S is

the shearing stress in an outer wire; and o, is the axial stress in center wire.

In calculating the contact stress (Boresi and Sidebottom, 1985) between an outer wire
and the center wire (see Fig. 2), it is assumed that the contact surface is along a straight
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Fig. 3. Forces and moments acting on a loaded hetical wire in cquilibrium.

line clement. Also, the strand is sufticiently long to disregard the radii of curvature which
lic in the plane of the line of contact. Thus, only the radii of curvature perpendicular to the
line of contact arc used to calculate the contact stress. The contract stress can then be
cxpressed as

b (25)
.= A 2
where
b= (—21Y1A/n)“5 (26)
and
201 =v)/E
A1 - v)/E] o
b
200 2p,
The radii of curvature for the first strand configuration, p, and p, are
R, 7
= Ty ...8
P = Gin? 2, (28)
h
L=, (29)
P2 7’

For the sccond wire rope configuration which includes a **flat spot’ on the outer wires,
the radius of curvature p, is the samc as in eqn (28) and p, = =, thus reducing eqn (27)
to

A =4p,[(1-v*)/E]. (30)



Response of a strand with elliptical outer wires 39

Table 1
Modulus of elasticity (£) 3.00E+07 psi
Poisson’s ratio (v) 0.25
Muximum outer diameter of cable (d) 0.500 inches
Number of wires in second laver (m.) 6
Total axial load (F¢) 10.000 pounds
Rotational rope strain (§.) 0 radians
original helix angle of wire (x.) 75 degrees
RESULTS

As stated in the Introduction. the first strand configuration consists of a center wire
with a circular cross-section and six helical outer wires with elliptical cross-sections that
only make contact with the center wire. The second strand configuration is the same except
for a small flat surface on each of the outer wires which only makes contact with the center
wire. The parameters that are kept constant for both configurations are shown in Table 1.
The modulus of elasticity £, and Poisson’s ratio v, are properties of the material used in
the wire rope. The original outer diameter . number of wires m, and the rotational strain
of an outer wire f}; are the geometrical constraints. All of the internal forces. toads and
strains are expressed in terms of the two independent variables. the total axial load on wire
rope Fr and the initial helix angle of the outer wire ;.

Table 2 shows the resulting forces, moments, stresses and strains from eqns 1, 2,6, 17,
18 and 24 for the core wire of a steel strand under a 10,000 pound load and no end rotation.
Each column of data is based on the geometry of an outer wire in which the minor axis
radius b, is reduced by 5% of the major axis radius «¢,. In order to maintain a constant
outer diameter d, the core wire radius R, must increase as the minor axis A, decreases. This
accounts for the increase in the axial force F, and the reduced strain as the outer wires
become more cecentric. The moment on the core wire is zero because the strand is prevented
from having an end rotation fi,.

The forces, moments, stresses and strains fromegns 1, 2,4, 7-16, 21 -23 and 24 for the
outer wires with the sume geometric constraints as the core wire are shown in Table 3. The
load-carrying capacity of the outer wires decreases with increased eccentricity of each outer
wire because of the reduction in the cross-sectional areas. The axial, a,, bending, oy and
contact stresses, g and g, reduce lincarly (see Figs 4, 5, 7), while the sheiring stress S
reduces non-lincarly (see Fig. 6) because of the reduction of the axial load F,. The strand
geometry which includes the “flat spot™ reduces the contact stress between an outer wire
and the core wire from 257,570 to 176,536 psi for the concentric outer wire, a reduction of
over 30%. The contact stress between the most eccentric outer wire and the core wire is
reduced over 26% by including the ““flat spot™ on the outer wire. The change in the reduction
of the contact stress is due to the increased radius of curvature at the point of contact.

Table 4 lists the total axial load Fy, strain &, and moment M on the strand from eqns
6, 17 and 18. The slight increase in the axial load Fy from the given value in Table 1 is due
to the contribution of the shearing force in the outer wires. This total shearing force is
negligible in the case of concentric outer wires and reduced with eccentricity. This is why
the contribution of the shearing force in an outer wire N, (1/6 of the total shearing force)
is neglected when caleulating the axial strain, in the center wire, &,.

CONCLUSIONS

An investigation of the axial response for two strand configurations has been per-
formed.
The geomctric constraints for both configurations include:

(a) a constant outer diameter d
(b) no end rotation (ff = 0)
(c) the outer wires only make contact with the center wire.



Care wire

Wire radius (R,)
Axial foree (F))
Axial strain in core (3 )
Axial stress (o))

Total moment (M)

Second layer of wires
Helix rudius of wires r,
Miner axis radius b,
Major axis radius o,
Change in helix angle Az,
Axial strain in wire §,
Change of curvature Ak,
Change in angle of twist Ar,
Bending moment G,
Bending siress oy

Twisting moment H,
Shearing stress §

Auxial forees in wire 7',
Sheartng foree N,

Contact force §,

Contact stress {1) o4
Contact stress () 0
Axial force second layer £,
Total moment My

Total axial struin &,
Total moment My

0954 = 8

Table 2

0.704 = &

351.26

349.81

347.78

34503

341.42

094 =8 0854 =8 0.804 =8 0754 =8
0.08623 0.09056 0.09517 0.10006 0.10326 0.11679 0.11666
1726.69 1874.73 2037.77 221742 241545 2633.82 2874.63
0.00346 0.00243 0.00239 0.00235 0.00231 0.00228 0.00224
13910 712157 71621 70502 69398 68308 67230
0.00000 0.00000 0.00000 0.00000 0.0000¢ 0.0000¢ 0.00000
Table 3
A= 8B 0954 = 8 0904 =8 0854 =B 0804 =28 0754 =8 0.704 = B
0.16812 0.17028 0.17258 0.17503 0.17763 0.18039 0.18333
4.08188 0.07972 0.07742 0.07497 0.07237 406961 0.06667
0.08188 0.08391 0.08602 0.08820 0.09046 0.09281 0.09524
0.00076 0.00075 0.00074 0.00073 0.00072 0.00071 0.00070
0.00226 0.00222 0.00219 0.00213 0.00212 0.00209 0.00205
~0.00204 -0,00198 ~0.00192 -~ 0.00187 -~ 000181 -0.00175 —0.00170
—0.00306 ~.00297 ~0.0028% -~ (.00230 -~ 0.00271 —~0.00263 —0.4K1155
—~ 2 15630 - 1.98207 -~ 1 BU774 - 163426 - 1.46272 -~ 1.29430 —1.13033
— 5000 81 ~4732.45 - 4464.55 -~-4197.22 -~ 3930.57 —3664.72 -3399.83
— 258877 ~ 250097 - 2.39701 - 127652 -2.13952 ~ 1.98657 —~1.81884
—3001 .88 -~ M85.70 - 295995 -~ 192336 - 2874.63 —2812.42 —~2735.37
1427.53 1401.98 1373.85 1342.85 1308.68 127101 1229.45
T17504 192612 1.68826 146300 1.25182 1.05603 0.87679
-~ 565.57 ~548.70 - 530.81 —~511.83 —~4491.77 - 470.51 —448.03
- 257570 - Y5818 - 234071 - 22232 -~ 210593 ~ 195862 — 187135
- 176336 - 169675 ~ 162801 ~ 135911 — 148999 — 142061 — 135088
$276.68 8118.26 7964.85 7784.86 7586.49 7367.82 7126.73
352213 351.288 39813 347778 345030 341,425 336.796
Table 4

0954 = 8 0NA = B 0.854 =8 0.804 = B 0754 = B 0704 = B

10002.99 10002.62 10002.27 10001 .94 10001.64 1000t .36

0.00243 0.00239 0.00235 0.00231 0.00228 9.00224

0.654 = 8 0.604 = B

@.12291 $4.12956
314017 343290
0.00221 0.00217
66161 65098
Q.00000 O.O((H)
0.654 = 8 0.604 = 8
0.18646 018978
$.06354 0.06022
0.09776 0.10037
0.00069 000067
0.00202 0.00199
-~ 080165 —0.004 54
—3.00246 — (L1238
—0G.97223 —.82150
—-3136.10 — 287374
~1.638%82 - 144744
- 2042, 1K ~ 253164
1183.64 [AREN K]
$4.71500 0.57126
- 42428 — 399,24
- 175414 — 16395
— 128072 — 121002
6860.94 656799
130947 323654
0.654 = B 0.604 = B
1000, 1 LOOEK). Y
0.00221 D.o00217
33395 31365

or

OT13IS0D) "V '£) PUR AVMNOD) 'V ‘1
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Fig. 4. Axial stresscs in strand.
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Fig. 7. Contuct stress.

For the first configuration consisting of a center wire having a circular cross-section
and six helical outer wires with elliptical cross-sections the following conclusions can be
made.

(1) With the total axial load F; and the original helix angle «, held constant the
percentage of the total load that the center wire supports increases and the overall strains
and moments in the rope decrease because of the change in the center wire radius.

(2) The calculated internal stresses are reduced as the outer wires increase their
cllipticity.

Since the second configuration is the same as the first except for the small flat surfuce
on cich of the outer wires, the same conclusions as listed above apply, as well as:

(1) compared with the first configuration, the flat surface significantly reduces the
contiact stress between the outer wires and the center wire
(2) this difference decreases as the outer wires become more eccentric.

If different materials are available for strand construction, the theory can be used to
optimize the design of the strand. For example, if a constant diameter, pitch of the outer
wires and number of wires in the second layer are the geometric constraints for the strand
design and the maximum load is known, the design can be modified for cach of the materials.
In this way, a less costly material may be used to support the same given load. By using
this theory, other parameters can be modified to optimize the design of a strand.
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